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Predators and competitors of vertebrates can in theory reduce the density of

infected nymphs (DIN)—an often-used measure of tick-borne disease risk—

by lowering the density of reservoir-competent hosts and/or the tick burden

on reservoir-competent hosts. We investigated this possible indirect effect of

predators by comparing data from 20 forest plots across the Netherlands

that varied in predator abundance. In each plot, we measured the density of

questing Ixodes ricinus nymphs (DON), DIN for three pathogens, rodent den-

sity, the tick burden on rodents and the activity of mammalian predators. We

analysed whether rodent density and tick burden on rodents were correlated

with predator activity, and how rodent density and tick burden predicted

DON and DIN for the three pathogens. We found that larval burden on two

rodent species decreased with activity of two predator species, while DON

and DIN for all three pathogens increased with larval burden on rodents, as

predicted. Path analyses supported an indirect negative correlation of activity

of both predator species with DON and DIN. Our results suggest that preda-

tors can indeed lower the number of ticks feeding on reservoir-competent

hosts, which implies that changes in predator abundance may have cascading

effects on tick-borne disease risk.
1. Introduction
The incidence of zoonotic vector-borne diseases has increased in recent decades

[1]. In northwestern Europe and northeastern North America, many of these

are caused by pathogens that are transmitted by ticks from the Ixodes ricinus com-

plex: I. ricinus in Europe and Ixodes scapularis in North America [1,2]. Both species

are three-host ticks that, in temperate climates, mainly feed on small rodents or

birds as larvae, on multiple host species as nymphs and on deer as adults [2].

While feeding on these hosts, ticks can become infected with pathogens that are

transmitted by the host [3]. Infection prevalence in ticks often increases with

the number of blood meals; hence, larvae tend to have a lower infection preva-

lence than nymphs, and nymphs tend to have a lower infection prevalence than

adults [4]. Population densities of ticks show an opposite pattern, larvae being

more abundant than nymphs, which in turn are more abundant than adults [3].

Therefore, the density of infected nymphs (DIN) is often referred to as the most

important ecological parameter that, together with the level of human exposure

to ticks, determines tick-borne disease risk [5].
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There are large differences between areas in the incidence of

tick-borne diseases [6,7]. These differences are partly caused by

differences in DIN, which have been attributed to differences in

climate and habitat characteristics that influence tick survival

[3] and to differences in host availability, which influences

tick densities and infection with pathogens [8]. DIN is often

estimated as the product of the density of nymphs (DON)

and nymphal infection prevalence (NIP), and depends on the

absolute number of larvae that get infected while feeding on

reservoir-competent hosts [8,9]. This number is determined

by: (i) the abundance of reservoir-competent hosts, (ii) the aver-

age number of larvae that feed on each host individual (larval

burden), and (iii) the percentage of larvae that get infected

while feeding on a reservoir-competent host (realized reservoir

competence). The realized reservoir competence of a host

species is dependent on many factors, including the infection

prevalence of the host, which is again dependent on tick

burden [10,11]. Therefore, DIN is mainly determined by the

density of reservoir-competent hosts and their tick burden [12].

There are reasons to assume that host density and tick

burden on hosts may be influenced by predators and competi-

tors of hosts, in at least two ways [12]. First, Ostfeld & Holt [13]

reasoned that predators can reduce disease transmission by

lowering the density of reservoir-competent hosts. This idea

was supported by a study of tick-borne pathogens in the north-

eastern USA, in which the incidence of Lyme borreliosis was

negatively correlated with the density of red fox (Vulpes
vulpes) [7]. To explain these patterns, Levi et al. [7] provided a

theoretical model in which foxes decreased the density of

white-footed mice (Peromyscus leucopus)—the most important

reservoir-competent host for Borrelia burgdorferi, the bacteria

causing Lyme borreliosis, in North America—which then

led to a decrease in DIN. However, empirical data on rodent

densities and DIN in this relationship were lacking.

Second, predators might reduce DIN via non-lethal effects

on prey. For example, many prey species show decreased

movement and increased refuging behaviour in the presence

of a predator or cues of predator presence such as predator

scent [14]. As movement is an important parameter deter-

mining the encounter rate of hosts with ticks, and thus tick

burden [15], predators might lower disease risk by reducing

tick burden on prey species. The negative correlation between

fox density and Lyme borreliosis incidence in Levi et al. [7]

could thus be a result of a direct effect (predation) and/or

an indirect effect (changed behaviour) on white-footed

mice. Changes in the presence or abundance of predators

could thus have cascading effects on DIN by affecting both

the density of reservoir-competent hosts and the tick

burden on reservoir-competent hosts.

In this study, we empirically tested for an indirect negative

correlation between the abundance of mammalian predators of

rodents and DIN for three tick-borne pathogens, via rodent

density and tick burden on rodents. We used a study system

including two rodent species—bank vole (Myodes glareolus)
and wood mouse (Apodemus sylvaticus)—and three tick-borne

pathogens for which these two species are the most important

reservoir-competent hosts in Europe [10,16]—Borrelia afzelii
(one of the genospecies of B. burgdorferi s.l.), Borrelia miyamotoi
and Candidatus Neoehrlichia mikurensis. To examine empirical

evidence for a cascading effect of predator activity on DIN, we

first explored the relationship between predator activity, rodent

density and tick burden on rodents in 20 forest plots with dif-

fering fauna in the Netherlands. Second, we explored the
relationships of rodent density and tick burden on rodents

with DON and DIN for the three pathogens in the same

plots. We included an analysis of DON as rodents are the

most important hosts feeding I. ricinus larvae in temperate

Europe, suggesting that predators might also have a cascading

effect on nymphal densities [10]. As the tick burden on rodents

might be dependent on rodent density and the number of ticks

in the environment [17], we also included these parameters in

the analyses of tick burden on rodents. Finally, we used path

analysis to determine whether there was support for an indirect

correlation between predator activity and both DON and DIN.
2. Material and methods
(a) Study sites
We collected data in 20 forest plots of 1 ha located within 19 forest

sites in the Netherlands, with more than 5 km between sites. Sites

were selected to form a large gradient in predator abundance

based on distribution maps and information from the managers

of the nature reserves. We assigned each plot to one of five

vegetation types, based on the dominant herbaceous species (elec-

tronic supplementary material, table S1). We sampled 11 plots in

2013, and nine in 2014 (electronic supplementary material, table

S1). In one site, Enkhout, we collected data in two plots 150 m

apart, of which one was inside an exclosure of 3 ha. The exclosure

was built to exclude large herbivores 3 years before field collection,

and used by us to mimic a situation in which all larger predators

were absent, which we verified with camera trapping data.

(b) Predator activity
Rodents are known to change their behaviour in response to the

presence of predators or predator scent [14,18]. The likelihood

that a rodent perceives a predator increases with the amount of

predators passing its home range, which is determined by the

local density and activity of predators in a plot [19]. This combi-

nation of local density and activity of predators can be measured

using the passage rate: a photographic capture rate corrected for

differences in detectability between species and habitats [20,21].

We measured passage rates of predators using camera traps

(HC500; Reconyx Inc., Holmen, WI, USA) during March–

November, the period in which I. ricinus is most active in the

Netherlands [22]. We used the camera trap set-up described by

Hofmeester et al. [21] to obtain 18 camera positions, totalling 504

camera trapping days per plot. Theft and camera malfunction

caused some variation in the total number of camera trapping

days per plot (electronic supplementary material, table S1).

To quantify effective detection distance (EDD), we placed a line of

markers at distance intervals of 2.5 m in the centre of the view

of each camera [21]. Then, for all animals that crossed the line of

markers, we recorded the species and distance intervals. The fre-

quency distribution of intervals was then used to estimate the

EDD for each species per vegetation type (electronic supplementary

material, table S2) [21].

The EDD estimates were used to determine passage rates per

species per camera location as:

Pi ¼
xi

t� EDDiv
, ð2:1Þ

where Pi is the passage rate of species i (in m21 d21), xi the

number of passages of species i, t the total time the camera

was active (in days) and EDDiv the effective detection distance

of species i in vegetation type v (in metres). This passage rate

is an index of local activity, described as the number of animals

passing a line in front of the camera per day standardized for

differences in detectability. For each plot, we calculated the

plot-specific passage rate per species as the arithmetic mean of
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(c) Rodent density and tick burden
We quantified tick burden as: (i) larval burden, the mean number

of larvae found on individual rodents at first capture per species

per plot, and as (ii) nymphal burden, the mean number of nymphs

found on individual rodents at first capture per species per plot.

We used these measures to distinguish between the chance that

individual rodents become infected by feeding an infected

nymph (nymphal burden) and the chance that uninfected

larvae become infected by feeding on an infected rodent (larval

burden). We studied the two most important rodent species feed-

ing I. ricinus in the Netherlands, bank vole (M. glareolus) and

wood mouse (A. sylvaticus) [23].

Rodent density and tick burden were quantified by live trap-

ping and screening of rodents. In each plot, we established a grid

of 8 � 8 (64) longworth small-mammal live traps (Heslinga

Traps, Groningen, The Netherlands) with a 12 m inter-trap dis-

tance for one week in July or August, at the peak of larval

activity in the Netherlands [22]. We baited the traps with maize,

wheat, mealworms and a piece of carrot, and added hay as insulat-

ing material. We pre-baited the live traps for 3 days, and then

checked the traps during six consecutive trapping sessions at

12 h intervals. Captured rodents were transferred from the trap

into a transparent plastic bag, from which we identified the ani-

mals to species. We handled the mice and voles with care, by

holding them by the scruff of their neck and counted all the ticks

on the head, ears, throat and neck of the animal. We collected a

stratified random selection of ticks from rodents from each

plot—approximately 10% of the counted ticks—for identification

to species level in the laboratory using an established identification

key [24]. All collected ticks were identified as I. ricinus. All rodents

were individually marked by clipping some of the top fur in a

unique pattern, for individual identification when recaptured [25].

We estimated the density of each rodent species using the cap-

ture–mark–recapture models for closed populations presented by

Otis et al. [26] as implemented in MARK [27], assuming that the

probability of capture ( p) and the probability of recapture (c)

were equal and constant during trapping sessions. As we sampled

1 ha plots, we report the abundance estimates from MARK as den-

sities per hectare. For the six combinations of plot and species

where the minimum number of animals caught per species was

too low to estimate a density using MARK, we used the minimum

number of individuals known alive as the density estimate.
(d) Tick density
We determined density of I. ricinus larvae and nymphs by collect-

ing ticks six times in each plot, once every four weeks from April to

September. Tick density was determined by blanket-dragging of

20 transects of 10 m with a 1 m2 cotton cloth [28] during each

four-week interval, totalling 1200 m2 per plot. We only sampled

ticks in optimal conditions: on dry days, with air temperature

greater than 108C [3], and in dry vegetation less than 60 cm high

[29]. We measured air temperature and relative humidity at the

start and the end of each sampling session within the vegetation

using a hygro-thermometer (TH-1; Amprobew, Everett, WA,

USA) as both can influence the efficiency of drag sampling, result-

ing in biased density estimates [30]. During all sessions, dragging

was performed within 5 days in all plots to minimize variation in

weather conditions. We calculated the average number of nymphs

per 100 m2 over the whole period to analyse differences between

plots. All I. ricinus nymphs were collected in Eppendorf tubes

and stored at –208C until pathogen analysis.

To estimate larval density at the time of rodent trapping, we

averaged the number of larvae dragged in July and August to
estimate larval density per 100 m2. We used this estimate

of larval density in our analysis of larval burden on the two

rodent species.

(e) Density of infected nymphs
To determine the DIN with tick-borne pathogens transmitted by

rodents, we determined pathogen prevalence in all individual

nymphs by qPCR using the methods described in Heylen et al.
[31] (B. miyamotoi) and Jahfari et al. [32] (Ca. Neoehrlichia mikuren-

sis). There is no qPCR available for B. afzelii (one of the genospecies

of B. burgdorferi s.l.), so we used a qPCR for B. burgdorferi s.l.

as described in Heylen et al. [31] followed by a conventional PCR

targeting the variable 5S-23S intergenic spacer region on the posi-

tive samples of the qPCR according to the protocol described in

Coipan et al. [33]. We determined the number of nymphs found

with a co-infection of two pathogens and co-infection with all

three pathogens, and estimated the overall prevalence of these

co-infections using the measured prevalences.

Only 44% of the B. burgdorferi s.l. positive nymphs (as deter-

mined by qPCR) yielded a successful conventional PCR and

sequence result. To be able to use the more sensitive qPCR results

to obtain as good an estimate as possible for the infection preva-

lence with B. afzelii, we assumed that all genospecies of

B. burgdorferi s.l. had an equal probability of being successfully

sequenced. By doing so, we could approximate the infection

prevalence of nymphs with B. afzelii for each plot as:

NIPBa ¼
PBa � IBb

Nt
, ð2:2Þ

where NIPBa is the nymphal infection prevalence with B. afzelii,
PBa the proportion of successful sequences identified as B. afzelii,
IBb the total number of nymphs infected with B. burgdorferi s.l. as

determined by qPCR and Nt the total number of nymphs tested

in a plot.

We used the estimated infection prevalence with B. afzelii and

the infection prevalence as determined by qPCR for B. miyamotoi
and Ca. N. mikurensis to estimate the density of questing

nymphs infected by these pathogens as:

DINPi ¼ NIPPi �DON, ð2:3Þ

where DINPi is the density of questing nymphs infected with

pathogen species i (per 100 m2), NIPPi the infection prevalence

in questing nymphs with pathogen species i and DON the den-

sity of questing nymphs as determined by blanket-dragging (per

100 m2).

( f ) Statistical analysis
Statistical analyses were performed in R v. 3.2.3 [34] using the nlme
package [35] to fit linear mixed models (LMMs) and the

glmmADMB package [36] to fit generalized LMMs (GLMMs). We

first explored the data by testing for correlations between:

(i) bank vole or wood mouse density, (ii) larval burden on bank

voles or wood mice, or (iii) nymphal burden on bank voles or

wood mice (GLMMs with negative binomial distribution and log

link) and the activity of the different predator species that we

detected in our plots using the dredge function in the MuMIn pack-

age [37]. Second, we explored correlations between rodent density,

larval burden and nymphal burden (per species) with the density

of questing nymphs (DON) and the DIN for all three pathogens

using GLMMs with a negative binomial distribution and log

link. We did not include nymphal burden in the analyses for

wood mice as nymphal burden was correlated with larval

burden in this species (GLMM: b ¼ 0.63, p ¼ 0.04). As temperature

and humidity were correlated (LMM: b ¼ 22.17, p ¼ 0.001), we

only added humidity as a covariate in all models of DON and

DIN to correct for possible effects of these parameters on questing

tick activity. We tested for collinearity by calculating the variance
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inflation factor [38], which was below 2 for all reported models.

We allowed a random intercept per vegetation type nested

within year in all models including DON or DIN to correct for

possible differences in drag-sampling efficiency between veg-

etation types and possible differences in questing tick densities

between years owing to differences in weather conditions. We

allowed a random intercept per year for all other models to correct

for possible differences between years.

We used confirmatory path analysis using directional separ-

ation [39], to quantify an indirect correlation of predator activity

with DON and DIN via rodent density or larval burden on

rodents. When data used in a path analysis have a hierarchical

or multi-level structure, directional separation can be used to

test causal models [39]. A causal model is rejected when vari-

ables that are only indirectly connected by a causal path are

not independent from each other conditional on the variables

that are direct causes of either of the variables to be tested. An

example from our model is the relationship between predator

activity and DIN, which would be independent conditional on

rodent density and larval burden on rodents (independence

claim) if a causal relationship exists. This independence can be

statistically tested using a model in which all parameters in the

independence claim are included. Using the example above

that would be a model regressing DIN with predator activity,

rodent density and larval burden, where predator activity

should not be correlated with DIN when rodent density and

larval burden are held constant.

We determined and tested the independence claims for the

causal models (electronic supplementary material, S3) and calcu-

lated C values as described by Shipley [39] for each of the

combinations of DON and DIN for the different pathogens per

rodent species. We only tested path models for predators and

rodent characteristics where we found significant correlations

(a ¼ 0.05) for the individual tests. Causal models were rejected if
the C value was unlikely to have occurred by chance ( p , 0.05)

using a x2-test [39]. We tested the path coefficients for not

rejected causal models using GLMMs with a negative binomial

distribution and a log link for all paths.

As larval densities, rodent densities, larval burdens and

nymphal burdens were over-dispersed, we log10 transformed

these parameters to approximate normality in models in which

these parameters were included as explanatory variables. If the

parameter included estimates of zero, we added the lowest

measured positive number to circumvent problems with the trans-

formation. We standardized all parameters, when applied after

transformation, by extracting the mean and dividing by 2 s.d.

[40] to obtain standardized regression coefficients.

We used a x2-test to test for differences in observed prevalence

of co-infections with the different pathogens in all questing

nymphs, and expected prevalence of co-infections based on

the infection prevalence of the separate pathogens, to test for

associations between the pathogens.
3. Results
We found large variation between plots in the DIN for B. afzelii,
B. miyamotoi and Ca. Neoehrlichia mikurensis, and also in the

activity of mammalian predators of rodents (see [41] for full

dataset). Red fox (V. vulpes) was present in most plots (18 out

of 20), followed by European pine marten (Martes martes; 12

out of 20), stone marten (Martes foina; 6 out of 20) and European

polecat (Mustela putorius; 5 out of 20). Where they were present,

red fox also showed the highest activity (mean+ standard

deviation) 0.0080+0.0061 m21 d21, followed by Pine marten

0.0041+0.0037 m21 d21, stone marten 0.0011+
0.0011 m21 d21 and polecat 0.0011+0.0006 m21 d21.
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We excluded one plot (Duin en Kruidberg) from our

analyses as we did not catch any rodents in this site and

thus could not determine tick burden on rodents. For the

analyses involving tick burden on bank voles (M. glareolus),

we also excluded two sites (Amsterdamse Waterleiding

Duinen and Schoorlse Duinen) where we did not catch any

bank voles.

Exploratory analyses showed that bank vole density

increased with pine marten activity (GLMM: b ¼ 1.45, p ¼
0.04) but was not correlated with the activity of any of the

other predators (electronic supplementary material, S4).

Wood mouse (A. sylvaticus) density was not correlated with

the activity of any of the predators, although there was a

near significant trend for polecat (b ¼ 1.22, p ¼ 0.06; electronic

supplementary material, S4). Larval burden on bank voles

(bfox ¼ 20.99, pfox ¼ 0.004; bmarten ¼ 20.91, pmarten ¼ 0.02)

and wood mice (bfox ¼ 21.60, pfox , 0.001; bmarten ¼ 21.32,

pmarten , 0.001) decreased with the activity of red fox and

stone marten (figure 1; electronic supplementary material,

S4). Nymphal burden on bank voles and wood mice was not

correlated with predator activity (electronic supplementary

material, S4), although there was a negative trend of nymphal

burden on wood mice with red fox activity (b ¼ 21.29, p ¼
0.11). Further exploration showed that both DON and DIN

for all three pathogens increased with larval burden on both

bank voles and wood mice (figure 2; electronic supplementary

material, S5).

Path analyses supported an indirect correlation of both

red fox and stone marten activity with DON (electronic sup-

plementary material, figure S6) and DIN for B. afzelii,
B. miyamotoi and Ca. N. mikurensis via mean larval burden

on both bank voles and wood mice (figure 3). One of the
independence claims for the path concerning DON was not

met (electronic supplementary material, S3), so this path

was added to the path diagram, after which both the path

models for bank vole (C ¼ 4.8, p ¼ 0.60) and for wood

mouse (C ¼ 5.8, p ¼ 0.47) were not rejected (electronic sup-

plementary material, figure S6). None of the tested path

models for DIN for bank vole (B. afzelii: C ¼ 5.3, p ¼ 0.72;

B. miyamotoi: C ¼ 3.7, p ¼ 0.88; Ca. N. mikurensis: C ¼ 3.4,

p ¼ 0.90) and for wood mouse (B. afzelii: C ¼ 9.4, p ¼ 0.31;

B. miyamotoi: C ¼ 7.2, p ¼ 0.52; Ca. N. mikurensis: C ¼ 7.9,

p ¼ 0.45) were rejected. Consistent with the previous ana-

lyses, not all path coefficients were significantly different

from zero: there was no correlation of red fox and stone

marten activity with either bank vole or wood mouse density,

no correlation between bank vole density and mean larval

burden on bank voles, no correlation between wood mouse

density and mean larval burden on wood mice and no corre-

lation between bank vole or wood mouse density and DIN

for any of the pathogens (figure 3). Larval burden on bank

voles and wood mice increased with larval density, and

decreased with red fox and stone marten activity, as expected

(figure 3). For each of the pathogens, DIN increased with

larval burden on rodents also after correcting for differences

in bank vole or wood mouse density (figure 3).

Among 16 617 questing nymphs that we screened, we

found very low co-infection percentages with an over-rep-

resentation of all four possible co-infections: B. afzelii and

B. miyamotoi (observed % ¼ 0.084, expected % ¼ 0.045, x2-

value ¼ 4.3, p ¼ 0.038), B. afzelii and Ca. N. mikurensis

(observed % ¼ 0.54, expected % ¼ 0.13, x2-value ¼ 168.1, p ,

0.001), B. miyamotoi and Ca. N. mikurensis (observed % ¼

0.18, expected % ¼ 0.12, x2-value ¼ 4.0, p ¼ 0.047) and the
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Figure 3. Path diagrams showing direct and indirect correlations of predator activity and larval density with rodent density, mean larval burden on rodents and DIN
for (a) bank voles and B. afzelii, (b) bank voles and B. miyamotoi, (c) bank voles and Ca. Neoehrlichia mikurensis, (d ) wood mice and B. afzelii, (e) wood mice and
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arrows indicate statistically supported paths. Path coefficients have 95% confidence interval between brackets. (Online version in colour.)
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three pathogens together (observed % ¼ 0.023, expected % ¼

0.0027, x2-value ¼ 19.8, p , 0.001).
4. Discussion
Theory predicts that predators can reduce the DIN by suppres-

sing reservoir-competent hosts and the encounter rate between

ticks and reservoir-competent hosts [7,13]. Changes in predator

presence and activity might thus have cascading effects on

disease risk. We carried out a field study to determine whether

variation in the density of questing nymphs (DON) and DIN

was explained by variation in predator activity via both

rodent density and larval burden on rodents. We found that

larval burden on two important reservoir-competent hosts,

bank vole (M. glareolus) and wood mouse (A. sylvaticus),

decreased with activity of two predators: red fox (V. vulpes)

and stone marten (Martes foina). Overall DON as well as DIN

for three tick-borne pathogens—B. afzelii, B. miyamotoi and

Ca. Neoehrlichia mikurensis—increased with larval burden

on these rodents. Path analyses supported an indirect (nega-

tive) correlation between both predator species and DON,

and DIN for all three pathogens, which is in agreement with

theory.

Path analyses revealed an indirect negative correlation of

both red fox and stone marten activity with DON and DIN

for all three tick-borne pathogens via differences in the mean

larval burden on rodents, even after correcting for an indirect

correlation with questing larval density (figure 3; electronic

supplementary material, figure S6). Red foxes and stone

martens generally carry few I. ricinus [42–44]. Therefore, we

conclude that it is unlikely that the negative correlation

between predator activity and larval burden on bank voles

and wood mice is caused by a dilution effect where foxes

and martens divert ticks that would otherwise feed on rodents

[12]. We suggest two other mechanisms that might explain the

negative correlation between predator activity and larval

burden on bank voles and wood mice. First, bank voles and

wood mice can become less active in areas with more cues of
predator presence [18], reducing their encounter rate with

ticks and therefore tick burden [15]. Second, those animals

that do move more and therefore acquire more ticks [15]

might also have a higher risk of being predated, leading to a

selective predation on highly infested animals [45]. Further

research estimating the day range of rodents in relation to pre-

dation risk and tick burden in areas differing in predator

activity is needed to test these hypotheses.

Our analyses focused on the determinants of DON and

DIN. The reason that we did not do the same for NIP is that

we lacked data on one of the main determinants: the number

of larvae feeding on non-rodent hosts [9]. There is certainly a

potential for predators to influence NIP, namely by changing

the number of larvae feeding on rodents and possibly also

the number of larvae feeding on non-rodent hosts that are

prey to the same predators. An analysis of the entire host

assemblage is needed to fully understand how predators

influence NIP, and thereby one of the parameters determining

tick-borne disease risk.

We sampled predators, rodents and questing ticks in each

plot in the same year. However, where there is a time lag

between these factors, we might have missed correlations. By

measuring all variables in the same year, we assumed that den-

sities were constant between years, but this assumption is

probably invalid, especially for rodents [46]. Ostfeld et al. [47]

found a positive correlation between rodent density in year

t 2 1 and the density of I. scapularis nymphs in year t. Similarly,

there might be a time lag on potential effects of predators on

rodent density [13]. This is further complicated by the fact

that on different spatial scales (i) predator activity might

reduce rodent population densities (negative correlation) [46],

while at the same time, (ii) patches with high rodent density

might attract predators from the surrounding area (positive

correlation) [48]. We mainly found support for the second

relationship as all correlations between predator activity and

rodent density in our study were positive (electronic sup-

plementary material, S4). Therefore, correlational studies on a

small spatial scale (less than or equal to 1 ha) might not be

able to show regulation of rodents by predators. Studies that
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span multiple years on several spatial scales are thus needed to

better understand the correlations between predator activity

and rodent and tick density.

We found a strong identity effect of red fox and stone

marten compared with the other mammalian predators of

rodents (electronic supplementary material, S4). All predators

were generalist foragers that feed on a large variety of food

items, but red fox has the highest proportion of small rodent

biomass in its diet [49–51], which might explain the strong

identity effect. Second, the identity effect might relate to pred-

ator size as red fox and stone marten were the two largest

predators that we recorded [52]. Reducing movement and

increasing refuging behaviour may be more effective as strat-

egy to avoid a larger predator than as strategy to avoid a

smaller predator that can also hunt in dense vegetation or

enter rodent burrows.

We found further support for a reservoir role of bank vole

and wood mouse for B. miyamotoi and Ca. N. mikurensis as

co-infections of these pathogens with B. afzelii in questing

nymphs occurred more than expected by chance. This

suggests that larvae get infected with these three pathogens

while feeding on the same host species, suggesting that the

same host species that maintain B. afzelii also maintain

B. miyamotoi and Ca. N. mikurensis. This is further supported

by the higher standardized correlation coefficients for larval

burden in correlation with DIN for these pathogens com-

pared with the results for DON. Overall, the patterns were

less strong for B. miyamotoi, probably because infection by

larvae and transovarial transmission also play a role in the

maintenance of this pathogen, but not for the others [53].

This study is, to our knowledge, the first to find empirical

support for a negative correlation between the activity of

predators, the density of questing nymphs and DIN for
tick-borne pathogens. Our study also highlights the impor-

tance of differences in larval burden between sites as these

were correlated with differences in nymphal densities and

DIN between sites. The results suggest that predators can

indeed lower the number of ticks feeding on reservoir-compe-

tent hosts, which implies that changes in predator abundance

may have cascading effects on tick-borne disease risk. The

emergence of cascading effects of predator activity on tick-

borne disease risk calls for the appreciation and protection of

predator species such as red fox, many of which are persecuted

across Europe [54].
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